initial, left- and right-side model boundary voltages, respectively; r, c,, ohmic resistance and capacitance
of the model cell; Rg, R, left- and right-side model boundary resistances; n, number of model cells; k;, Koy
kp, coordinate, time, and temperature scales; xo, cell coordinate; rg, time,
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USE OF A HYPERBOLIC EQUATION IN
THERMAL-CONDUCTIVITY THEORY

V. A. Bubnov and I. A. Solov'ev UDC 536.33

A solutioh of the telegraph equation is given which is close to a self-similar solution.

1. Singularities in Solutions of the Classical Equation of Thermal Conductivity. In the simulation of
thermal processes by the equation of thermal conductivity,

oT eT ' 1)

ot ox2
certain singularities occur. Actually, we consider the fundamental solution of Eq. (1)

T, (x, £) = 1;V 4naf exp[— x¥ (4at)) @
and find the mean value of the square of the temperature displacement from its initial position during the time
t:

AX? = [ (x — %2 Ty (x, 1) dx/f To(x, tydx = 2at. 3)

We define the rate of temperature displacement in the following manner:
d pa— Jp—
V=—r (Var) =varen. @

It then follows that the temperature nonuniformity is propagated instantaneously at the initial time. A similar
paradox occurs in the theory of Brownian motion [l

Using the fundamental solution, we find an equation for the surface of maximum temperature. To do this,
we differentiate Eq. (2) with respect to time and equate the result to zero. Then x2—2at = 0, hence x = v2at
and

dx

v =% _vaen, (5)
mex = Vaj(2t)

i.e., the expression for the rate of displacement of the surface of maximum temperature agrees with Eq. @)
and Vy,ax has a marked singularity.

The use of the classical equation of thermal conductivity in phase-transition problems also leads toa
similar paradox. Actually, in the well-known Stefan solution [2], the law of motion for the freezing line has
the form z = pvt so that

dz —_
V. =2 —p/2V 1)
ot p/(V_)
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Note that some problems in the theory of filtration and in vortex motion reduce to boundary-value prob~
lems for Eq. (1); consequently, the singularities mentioned also occur in these problems.

The existence of these paradoxes points to the need for refinement of the classical equation of thermal
conductivity.

On the basis of isotherm analysis, the following equation was obtained [9]:

o\ &T T [ dc\ T |
cf|{——— | — S =3 6
(=5 ) % + 5=l 5) 5 ®
We introduce the following notation: A = ¢/ (—dc/dt), @ =c?A. In some cases, X and a can be considered con- -
sidered constants. Equation (6).then takes the form

6 aT 02T :

2Ll (7)
atz + Ox? :
A similar equation was obtained by many authors [3, 7, 8] on the basis of relaxation concepts. As shown in
[9], the problem for wave propagation of heat is incorrectly formulated if a parabolic equation is used in it.
The incorrectness is eliminated by conversion to Eq. (7).

2. A Solution of the Telegraph Equation. We find a solution of Eq. (7) which transforms into the funda-
mental solution of the parabolic equation of thermal conductivity when A — 0. To do this, we introduce the new
variables

T =1, = x2/T. 8)
We seek a solution of Eq. (7) in the form
1
T=17fn1). 9
We indicate the conversion formulas
ad a . 9 d _L L
———— Tl — —— =21 T T —.
ot at dn  Ox on
We now rewrite Eq, (7) in the form
3 __ of 02 f 1. Of 1. O
}u e 1 Tt 3 1 I 2 21
[4Tf 6r+ + aqﬂ".anz
o*f ﬁi of af 2f
— - L =g|2-L qoan—L | 10
"aran] 2'FJr ax  Von “[ an M a0
We seek a solution of Eq. (10) in the form
fn®) = 37" (. 4
n=0

Substituting Eq. (11) in Eq. (10) and equating coefficients of identical powers of 7 on the right and left -
sides of the resultant equality, we arrive at a system of equations for f:

1 r r i
—"7f0"“nf(]=a(2fn+4nfn)v

3 S 3 , e
A [ St anfy e, ] —3 f—nf, =af; +4nR),

1 ’ ” 1 3 ’ 4 o
! [(nz——T)fn-ﬂLn@n + i, +n2fn_,] S N IS AL A4
The solution of the equation for f; has the form

fo(m) = Aexp[—n/(4a)].
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The functions fn@) (0 = 1) should be sought in the form

2n
fn(n) = AN exp[--n/ (4a)] ¥, 2ty
=0
where the ap; are unknown coefficients.

We obtain the general form of the desired solution T(y, 7) by substituting in Eq. (9) the expansion in

terms of inverse powers of v found for f(n, ). Returning to the variables x and t, we write T(x, t) in the
form :

_le R 2 \¢
T (6 ) = Aexpl—2/(dati = D) Eaa"i( ’:_) . 2

n=0

We write down the values of some of the coefficients:

A= 1; a,p= —%—2ab1; a,=b; a,=— —l—éa—z-; yy = %— 15ab,

+ 12a2b,, a21=;‘;ib1———%—12abz;az=b2; =—§G}-a?_ 12:12;
o, = 51;a‘ g = 112215 — 3‘:25 ab, + 315a%, — 1200%,; ay,

- _% 8225 b, — 420ab, -+ 180a%by; gy, = %— 2,

S O
519 | 512a ' *T T 24576a%

The coefficients A and bj G =1, 2, ...) are undetermined constants. In the following, we set A =1/V4na.
We consider the functions

for X . ___t
0 VE- > Vx ,
‘P(X.t)='lo ‘/ 2 e\ x_ <_¢___,
42 4ha 14 Vi
9%, ) = V7 (2a) expl— 1/ (20)] -37 [ (x, ). 13)

I,(z) is a modified Bessel function {3]. The derivatives at the points {x/Val =t/V X should be understood in the
generalized sense [4], namely:

1 x t
,t x = — —t] (2N —_— — |
P(* )V—a‘:—-;/;.“ 2a exp—( )]G(Va VX)
1 X !
’t X = —_— 4 —_— .
B0 VivE 2 P! /(27&)]6( Va V7 )

It is easy to obtain an asymptotic expansion of ¢(x, t) for |x/Val < t/VXin the form (12). In this case, b, =
-—‘/2, b, = —3/4, ... . Note that the function ¢(x, t) satisfies Eq. (7). Calculating the rate of propagation of
the initial maximum temperature, we find that Vy a5 =V a/X; i.e., the paradox noted is eliminated in the con-
version from Eq. (1) to Eq. (7).

With the help of the function ¢ (x, t) we now construct a solution of Eq. (7) satisfying the condition T (x, 0)=
F(x). Proceeding as in [5], we consider the superposition of solutions
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T(x, )= X F (%) 9 (Ax, ) Ax;. (14)
i
Converting to an integral in Eq. (14), we obtain

T(x, §)= SwF(z) ¢(x—2z, f)dz. (15}

—ca

Analysis of this solution shows that Eq. (15) transforms into the Poisson integral for the classical equation of
thermal conductivity [6] both for t — « and for A — 0. Considering the specific form of the function ¢ (x, t),
Eq. (15) can also be written in the form

T(x, t)='éxp[—t/(2x)1/2a{ﬁ( inz' — th )+F( ch? + Vtx‘)
x/Va-+t/Va 3 .
+Vi | F @—; (1 (V PI@2 — (x— 2Pi(a%a) 1 dz.
VE—tVR

In the case where F(z) is of complicated form and it is difficult to compute the integral on the right side of
Eq. (15), it is advisable to use the asymptotic expansion of the function ¢ (x, t).

NOTATION

T, temperature; t, time; x, spatial coordinate; a, thermal diffusivity; c, rate of isotherm displacement.
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